
HASSAN A. SIAL, RAMON BALDRICH, AND MARIA VANRELL
Journal of the Optical Society of America A, Vol. 37, Issue 1, 2020

Deep Intrinsic decomposition trained on surreal
scenes yet with realistic light effects

Introduction

Input image

Current intrinsic image dataset and challenges
Making/Building intrinsic image datasets is a challenging task that requires accurate controlling of 
lights, camera and objects positions. Following table lists few intrinsic image datasets with 
corresponding properties.

Original Reflectance Shading

Some image examples from most 
commonly used datasets:
MIT (right), Sintel (lower  middle 
rows) and IIW (last row) 

Intrinsic image decomposition is an inverse optics process to get internal characteristics 
such as shape, shading, reflectance, illumination and specular highlights[1]. Estimation of 
intrinsic images still remains a challenging task due to weaknesses of ground-truth 
datasets, which either are too small, or present non-realistic issues. On the other hand, 
end-to-end deep learning architectures start to achieve interesting results that we believe 
could be improved if important physical hints were not ignored. In this work we present a 
twofold
framework:
Flexible generation of images overcoming 
some classical dataset problems like
larger size jointly with coherent lighting 
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Surreal Intrinsic Dataset (SID)

Based on random Shapenet[5] objects
 Random selection of background, which corresponds to only reflectance change. 
 4 fixed light with random intensity
 3 different indoor environment for shading variation.
 Random Camera position in semi sphere around objects. 2 images for each 
object.

IUI Inception based U-Net architecture for intrinsic image estimation with double 

Results
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larger size jointly with coherent lighting 
appearance; 
Flexible architecture tying physical 
properties through intrinsic losses. 
Our proposal is versatile, presents low 
computation time and achieves state-of-art 
results.

Our Dataset

MIT Dataset

Sintel Dataset
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Conclusion

In this work we propose a versatile framework to define and train a convolutional network able to perform a intrinsic decomposition through training on a dataset with a large variety of light
effects and color reflectances. The approach presented and evaluated here is a first version, where we have just worked with single white light sources, single background, and a limited number
of room shapes, all of them based on flat surfaces. A wide range of variations can be introduced to improve the diversity of the scenes to be trained on. In parallel our proposed CNN architecture
has been defined in a simplistic way to reduce its number of parameters and enough flexible to be adapted to multiple type of visual tasks related to light effect estimation. Apart from intrinsic
decomposition it can be easily extended to color constancy or cast shadow removal, we already have preliminary results on these fields. The results obtained by all the experiments we report in
this paper, make us to be optimistic about the capabilities of the presented approach to train networks devoted to solve taks related to the estimation of light effects. In all the reported
experiments we show a performance close to the state of the art of the problem of intrinsic decomposition in shading and reflectance.

IUI Inception based U-Net architecture for intrinsic image estimation with double 
loss-function to predict both shading and reflectance in parallel.

IIW Dataset


