OSA Publishing

Deep Intrinsic decomposition trained on surreal scenes yet with realistic light effects

HASSAN A. SIAL, RAMON BALDRICH, AND MARIA VANRELL Journal of the Optical Society of America A, Vol. 37, Issue 1, 2020

Introduction

Intrinsic image decomposition is an inverse optics process to get internal characteristics such as shape, shading, reflectance, illumination and specular highlights[1]. Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small, or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work we present a twofold framework

Flexible generation of images overcoming some classical dataset problems like larger size jointly with coherent lighting appearance;

Flexible architecture tving physical

properties through intrinsic losses.

Our proposal is versatile, presents low computation time and achieves state-of-art results.

Current intrinsic image dataset and challenges

Making/Building intrinsic image datasets is a challenging task that requires accurate controlling of lights, camera and objects positions. Following table lists few intrinsic image datasets with corresponding properties.

Dataset	Size (#Images)	Model Fulfillment	Training on full Image	Diversified Background	Cast Shadows	Consistent Lighting
MIT (Grosse et al. [2])	220	yes*	no	no	no	yes
IIW (Bell et al. [3])	5230	no	no	yes	yes	yes
MIII (Beigpour et al. [39])	75	yes	no	no	no	yes
Sintel (Butler et al. [4])	890	no	yes	yes [‡]	yes	yes
ShapeNet (Shi et al. [5])	330K	yes	no	yes	no	no
Shapenet-Intrinsic (Baslamisli et al. [6])	20K	yes	no	yes	no	no
Our dataset (SID)	25K	yes	yes	yes	yes	yes
Baslamisli et al. [7]	35K	yes	no†	yes	yes	no
CGintrinsics (Li and Snavely [8])	20K	yes	no [†]	yes	yes	no
InteriorNet (Li et al. [41])	20M	no	no [†]	yes	yes	no

Results

UAB

Surreal Intrinsic Dataset (SID)

Based on random Shapenet[5] objects

- > Random selection of background, which corresponds to only reflectance change. 4 fixed light with random intensity
- > 3 different indoor environment for shading variation.
- Random Camera position in semi sphere around objects. 2 images for each object.

IUI Inception based U-Net architecture for intrinsic image estimation with double loss-function to predict both shading and reflectance in parallel.

					Ballastanas			Shading								
Our Dataset		N	Method (where tested)		MSE LMSE DSSIM		MSE LMSE DSSIM		DSSIM				-			
			etinex (v	bole in	are) [2]	0.0500	0.049	0.17	0.0400	0.0403	0.24					
IUI (foreground object)		1	// (fores	round e	ablect)	0.0046	0.0038	0.029	0.0023	0.0020	0.0178		1101			
		(10.9)	(12.9)	(5.9)	(17.4)	(20.2)	(13.5)	AND DESCRIPTION OF		10 11 Acres						
III (background walls)		0.0016	0.0014	0.019	0.0010	0.0008	0.023				1					
TOT (background walls)			(31.3)	(35.0)	(8.9)	(40.0)	(50.4)	(10.4)				•				
II/I (whole image)			0.0020	0.0019	0.020	0.0011	0.0009	0.022	March 1		A SA					
				. minge		(25.0)	(25.8)	(8.5)	(36.4)	(44.8)	(10.9)		1029	2029	~	-
						120107	(2010)	(0.0)	(5014)	(++,0)	(10.5)	Long -	1 10		- Gao	aller
			Table 2 our IUI given in image.	architect	for reflecta ture and R s. Errors a	nce and shad etinex algori re separately	ing predicti thm. IUI de reported or	ons on our d creases the o i object, on I	ataset. Cor error of Ret loreground	iparison be inex by the and the on	factor whole	Original	GT	IUI	GT	IUI
MIT Dataset						Reflectance			Shading				Reflectan	ce	Shadin	g
MIT Dataset			Method			MSE LMSE DSSIM		MSE LMSE DSSIM		E DSS	1	alle de		9 1000		
	H				MIDE	LINDL	DODIN		. 1	AL 1993	All Car	5-6 5-	5 1-1	5 0 C	Prof.	
			Retinex [2]		0.0032	0.0353	0.1825	0.034	8 0.10	27 0.39	and the second	Alice Ali	10 100	a dillo	Alline	
				SIRFS [18]			0.0416	0.1238	0.008	3 0.01	68 0.05	5	and an	5	Same.	Same.
Dire				ntrinsic	rs [26]	0.0277	0.0585	0.1526	0.015	4 0.02	95 0.13	3			2	
	ShapeNet [t [5]		0.0278	0.0503	0.1465	0.012	6 0.02	40 0.12			× (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	e i je	و المحرب
CGIntr			GIntri	nsics [8	8]	0.167	0.0319	0.1287	0.012	7 0.02	11 0.13			_		
	Intrinsic		Net [6]	1	0.0051	0.0295	0.0926	0.002	9 0.01	57 0.04	N. A.	off. of	S 673	S OF	0	
	RetiNet [6]		[6]		0.0128	0.0652	0.0909	0.010	7 0.07	46 0.10		* <u>/</u> * <u>/</u>	14	~ <i>1</i>	5 A 63	
	Relevel [0]			0.0046	0.0197	0.054	0.003	8 0.00	0.04	Input	Shi er al. [5] DI [26] Intrinsic-1	Net [6] Ours	GT		
101			0.0040	0.0177	0.004	0.000	0.0,	0.0.								
							part and	A.	Z	1	K Pr			1.10	0	L W
Method MSE LM		Reflectan	rtance Shading			DSSIM							P. A.		1 start	
Retinex [2]	0.0606	0.00366	0.227	0.0727	0.0419	0.24		- lan	4	-		UNITED STATES		COLL NO	100	-
Lee et al. [21]	0.0463	0.02224	0.199	0.0507	0.0192	0.177	STOR OF	X		-6	1000		27.6		1 the second	
SIRFS [18]	0.042	0.0298	0.21	0.0436	0.0264	0.206	51.mm			100	*	CONTRACTOR OF THE OWNER.		- Welling	aller .	1
Chen and Koltun [22] Direct Intuineire (26)	0.0307	0.0185	0.196	0.0277	0.019	0.165	1000		- May	1			and the second division of	- Contraction		
Fan et al. [38]	0.0069	0.0044	0.1194	0.0059	0.0043	0.0822	8	nal da	2	261			Can 17	- PALLS	like .	200
IUI fine-tuned on CS	0.0072	0.0054	0.1374	0.0068	0.0059	0.1247	N.	-	a mar	1	*					
IUI without fine-tuning	0.023	0.015	0.21	0.035	0.022	0.255	-	1.4.2					STAL S	Contraction of the local distance of the loc	14	2.50
IUI fine-tuned on GLS	0.0062	0.0047	0.1297	0.0087	0.0048	0.1183	R NA	3-50	2 Day	B	*		Reflectance	Shading	Reflectance	Shading
Table 4. Results on Sinici Image Split dataset. Best errors are highlighted in bold.						L	1	Nº FOR	-	ast S				Visual comparison on	MP1 Simicl using Scene upl	
Reflex		Reflectance			Shadir	u.	1.00	and the	Ø 97.24	- P	* 10,					
Stethod	MSE LMS		DSSIM	MSE LMSI		DSSIM	2.15									
Direct Intrinsics [26]	0.0238	0.0155	0.226	0.0205	0.0173	0.1816	5 tie	mill and	2 1) - u	E	# 23/					
Fan et al. [38]	0.0189	0.0122	0.1645	0.0171	0.011	0.1450	22	Asta .		1.K	1		Method		WHDR(mean)	runtime(sec)
IUI fine tuned on CS	0.0213	0.0140	0.1787	0.0253	0.0172	0.1874	,	Reflectance		Shading	Bet	tance Shading	Shen et al. [48]		36.90	297
IUI without fine-tuning	0.023	0.0154	0.20	0.034	0.023	0.24							Retinex(color) [2]		26.89	198.5
Ter me taka on GES		0.0110	w.rotas	0.0201	0.01.71	6 0.1013	Visual comparison on MPI-Sintelt dataset using image split.		t using image split.	Retinex(gray) [2]		26.84	225.3			
same a news or sense over spin union. Den errors all highlighted in bold.								Fan et-al	2018 Shedin		IUI (no fine tuning) chance Shading	Graces et al. [49]		25.46	5.1	
									L			Mary Mary	Zhao et a	d. [50]	23.20	34.7
							6	6	7	Line	in the		IUI (without fine-tuning)		22.50	0.02
									LI flattening [51]		20.94	310.94				
IIW Dataset						t 🛛							Bell et al. [3] Zhou et al. [28]		20.64	214
IIV Dataset				-	19.95	.900										
						A DECK OF THE OWNER	Nestmeyer et al	(CNN) [32]	19.49	200.081						
								Nestmeyer	et al. [52]	17.69	300.086					
								Bi et al. [51]		17.67	300					
								100		No. of Concession, Name	Fan et al. [38]		14.45	0.1		

Conclusion

In this work we propose a versatile framework to define and train a convolutional network able to perform a intrinsic decomposition through training on a dataset with a large variety of light effects and color reflectances. The approach presented and evaluated here is a first version, where we have just worked with single white light sources, single background, and a limited number of room shapes, all of them based on flat surfaces. A wide range of variations can be introduced to improve the diversity of the scenes to be trained on. In parallel our proposed CNN architecture has been defined in a simplistic way to reduce its number of parameters and enough flexible to be adapted to multiple type of visual tasks related to light effect estimation. Apart from intrinsic decomposition it can be easily extended to color constancy or cast shadow removal, we already have preliminary results on these fields. The results obtained by all the experiments we report in this paper, make us to be optimistic about the capabilities of the presented approach to train networks devoted to solve taks related to the estimation of light effects. In all the reported experiments we show a performance close to the state of the art of the problem of intrinsic decomposition in shading and reflectance.

rence on Computer Vision, pp. 2335{2342, 2009

- ar Vision (ECCV) (A. Fitzgibbon et al. (Eds.), ed.), Part IV, LNCS 7577, pp. 611(625, Springer-Verlag, 2012 17 IEEE Conference on. IEEE, 2017.
- m " ICCV 2015