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Introduction
Intrinsic image decomposition is an inverse optics process to get internal characteristics Current intrinsic image dataset and challenges
such as shape, shading, reflectance, illumination and specular highlights[1]. Estimation of Making/Building intrinsic image datasets is a challenging task that requires accurate controlling of
intrinsic images still remains a challenging task due to weaknesses of ground-truth lights, camera and objects positions. Following table lists few intrinsic image datasets with
datasets, which either are too small, or present non-realistic issues. On the other hand, corresponding properties.
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Our proposal is versatile, presents low
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results.
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Conclusion

In this work we propose a versatile framework to define and train a convolutional network able to perform a intrinsic decomposition through training on a dataset with a large variety of light
effects and color reflectances. The approach presented and evaluated here is a first version, where we have just worked with single white light sources, single background, and a limited number
of room shapes, all of them based on flat surfaces. A wide range of variations can be introduced to improve the diversity of the scenes to be trained on. In parallel our proposed CNN architecture
has been defined in a simplistic way to reduce its number of parameters and enough flexible to be adapted to multiple type of visual tasks related to light effect estimation. Apart from intrinsic
decomposition it can be easily extended to color constancy or cast shadow removal, we already have preliminary results on these fields. The results obtained by all the experiments we report in
this paper, make us to be optimistic about the capabilities of the presented approach to train networks devoted to solve taks related to the estimation of light effects. In all the reported
experiments we show a performance close to the state of the art of the problem of intrinsic decomposition in shading and reflectance.
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